じっくり勉強すれば身につく統計入門

2016 年 11 月 12 日 森戸記念館

「じっくり勉強すれば身につく統計解析」を副題としたシリーズ全3巻がサイエンティスト 社から刊行されている.タイトルは「医薬品開発のための統計解析:第1部基礎,第2部実験 計画法,第3部非線形モデル」である.今回は,この本の第3部の§2.5の薬物動態を元にコ ンパートメントモデルについてじっくりと解説する.また,経時測定データを適切に可視化す るためにJMP のグラフ作成機能をどう使えばよいか丁寧に解説する.

Excel 及び JMP による

血中薬物濃度のコンパートメントモデルあてはめ

伏見 啓 (一般財団法人日本食品分析センター)

- 第3部 非線形モデル・
- 2章5節 薬物動態の解析
 - (1) 薬物動態モデルの導出
 - (2) モデルの性質
 - (3) Excel ソルバーによるパラメータ推定
 - (4) JMP 非線形回帰によるパラメータ推定
 - (5) 水準のとりかた

補遺

JMP のグラフ作成機能を使いこなそう:経時測定データのケース

福島 慎二 (アステラスリサーチテクノロジー)

- 第2部 実験計画法改訂版
- 7章4節 経時データの解析

グラフ化の重要性

データの紹介

JMP データテーブルの基礎

「グラフビルダー」の使い方

「重ね合わせプロット」の使い方

まとめ

じっくり勉強すれば身につく統計入門 薬物動態の解析

第3部 非線形モデル 第2章 非線形最小2乗法(応用)5節

(一財)日本食品分析センター伏見啓

はじめに

「じっくり勉強すれば身につく統計入門」の発表も13回目となりました. なお、過去の発表資料はサイエンティスト社のホームページで公開されています. http://www.scientist-press.com/12_280.html

今回は、 医薬品開発のための統計解析 -第3部 非線形モデル- 2章5節 薬物動態の解析

演習ファイルの入手先 http://www.scientist-press.com/12_336.html

2

薬物動態の解析

ここでは

・ 投与された薬物が体内に吸収され、体内の薬物量が増加する.

・体内の薬物が(分布・代謝された後)排出されて体内から消失する. という過程を取り上げる.

薬物が体内でどのように移動・変化するのか 吸収(absorption)→分布(distribution)→代謝(metabolism)→排泄(excretion) という過程を薬物動態 (pharmacokinetic, ADME)という.

3

最も単純なモデルを用い,基本的な考え方だけに限定して説明する. 現実のデータを解析する場合は,適宜専門書を確認してほしい.

また、薬物動態の分野で用いられる記号にとらわれずに、 グリーン本内での記号と関連したものを使用している.

2.5 薬物動態の解析

- (1) 薬物動態モデルの導出
- (2) モデルの性質
- (3) Excel ソルバーによるパラメータ推定
- (4) JMP 非線形回帰によるパラメータ推定
- (5) 水準の取り方

(1) 薬物動態モデルの導出

薬物が血液中に投入されるプロセスには

- ① 静脈に一度に 注射
- ② 薬物を経口投与→消化管に入り小腸などで徐々 に吸収

薬物を皮下注射→皮下から血液中に徐々に吸収 ③静脈に点滴で連続的に投入

などが考えられる.

①③の場合;投与した薬物は全量血液中に入る.

②の場合 ;錠剤を経口投与した場合 錠剤が崩壊・薬物が溶出→吸収部位 まで移動→吸収→血液中に移行する (全量血液中に入るわけではない).

血液中の薬物は各臓器を出入りしながら体中 に分布し、肝臓やその他の臓器で代謝され、 糞便中にあるいは腎臓を介して尿中移行して 体外に排泄される.

5

6

①の『静脈に一度に注射』→血液中の薬物は投与量に比例して体外に排泄 される、という場合を考えてみる。

この場合,血液中の薬物量 y は,表示1.3.2のような指数曲線 $y = y_0 exp(-Bx)$ で表される.

(表示1.3.2は投与量 100 mg, 消失率10%/hr.)

表示1.3.2 静脈内投与後の血液中薬物量時間推移 (yo=100, B=0.1)

 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 一
 1
 二
 二
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

溢れた溶液は右の水槽に流れ込むので時間 t までに右の水槽に流れ込む 薬物量は

$$y_2 = a\{1 - exp(-b_1t)\}$$
(2.5.3式)

表示2.5.2 血中薬物量の時間変化(1)

← y₂の時間的な変化
 表示1.3.2のグラフを上下を逆にした形

右の水槽にも水で満たされていて、 左の水槽から溶液が流れ込むと 流入量分の溶液が溢れ出すとすると 右の水槽の薬物量 y₂ は単調増加し ない.

左の水槽から流れ出す溶液の薬物量はy₁に比例する。同様に右の水槽から 流れ出す溶液の薬物量はy₂に比例する。 y₂の薬物変化量は流入する量と流出する量の差となるので

$$\frac{dy_2}{dt} = b_1 y_1 - b_2 y_2 = b_1 aexp(-b_1 t) - b_2 y_2$$
(2.5.4式)

$$\frac{dy_2}{dt} = b_1 y_1 - b_2 y_2 = b_1 a exp(-b_1 t) - b_2 y_2 \qquad (2.5.4 \text{ cm})$$

b,は流出する速度を表すパラメータで、右の水槽の容積をV,とすると

$$b_2 = \frac{W}{V_2}$$
 となる.

右の水槽にも水が投入されるとすると、別の式になる.

腎臓から尿中に薬物が排泄される,と考えると,血液の循環量や濾過速度 によっても薬物濃度は変化する.

ここでは、これらを統合した排泄速度をb₂で表すこととする. 2.5.4式を解いて y₂ を求めると

$$y_2 = a \frac{b_1}{b_1 - b_2} \{-exp(-b_1t) + exp(-b_2t)\}$$
(2.5.5式)

数式の誘導は § 2.6 補遺 (1)を参照

排出速度 b₂が速くなると山の高さ (C_{max}) は低くなり,その位置(t_{max})は左に移動 する.

11

(2) モデルの性質

(1)では、y1やy2を薬物量として説明した。

しかし、現実の場で測定可能なのは血中の薬物濃度である.

血中濃度は血液中の薬物総量を全血液量で割ったもの、と考えると、血液 濃度の時間的変化は表示2.5.2の縦軸の単位が違うだけで形は同じ、と考 えられる.

薬物動態では血中濃度が関心の対象である。

y2を y と置き換えると, 2.5.5式は

$$y = a \frac{b_1}{b_1 - b_2} \{-exp(-b_1t) + exp(-b_2t)\}$$
(2.5.6式)

この式から,血中濃度 y の時間的変化を表す曲線は a, b₁, b₂の3つのパラ メータで変化することがわかる.

曲線の特長を表す量としては、yが最大になる時間 t_{max} ,山の高さ C_{max} , 曲線下の面積 AUC (Area Under the Curve) がある. これらの量も a, b_1, b_2 の3つのパラメータで表すことができる.

$$t_{max} = \frac{ln(b_1) - ln(b_2)}{b_1 - b_2} = \frac{ln(b_2) - ln(b_1)}{b_2 - b_1} \quad (b_1 \neq b_2 \text{のとき})$$

$$t_{max} = \frac{1}{b_1} = \frac{1}{b_2} \quad (b_1 = b_2 \text{のとき})$$

$$C_{max} = a \left(\frac{b_1}{b_2}\right)^{-1/(\frac{b_1}{b_2} - 1)} \quad (b_1 \neq b_2 \text{のとき})$$
(2.5.7式)

 $C_{max} = \frac{a}{e}$ (2.5.8式) $(b_1 = b_2 のとき)$

C_{max}は a と b₁/b₂の比で決まり排泄速度が速くなると山の高さは低くなる.

$$AUC = \int_0^\infty y dt = \frac{a}{b_2} \tag{2.5.9 t}$$

AUCは $a \ge b_2$ だけで決まる (吸収速度は無関係). つまり、静脈内に直接1度に注入したときのAUCと等しい.

式の誘導は § 2.6 補遺 (1)を参照

	表示2.5.3		血中薬	物量の	の時間	变化(2
	а	100.00	100.00	100.00	100.00	50.00
E	b1	2.00	1.00	0.50	0.25	1.00
	b2	4.00	2.00	1.00	0.50	0.50
I	tmax	0.35	0.69	1.39	2.77	1.39
l	Cmax	25.00	25.00	25.00	25.00	25.00
	AUC	25.00	50.00	100.00	200.00	100.00
		(1)	(2)	(3)	(4)	(5)
	0.0	0.00	0.00	0.00	0.00	0.00
	0.1	14.84	8.61	4.64	2.41	4.64
	0.2	22.10	14.84	8.61	4.64	8.61
	0.4	24.74	22.10	14.84	8.61	14.84
	0.7	18.58	25.00	20.81	13.48	20.81
	1.0	11.70	23.25	23.87	17.23	23.87
	1.5	4.73	17.33	24.92	21.49	24.92
	2.0	1.80	11.70	23.25	23.87	23.25
	2.5	0.67	7.53	20.44	24.88	20.44
	3.0	0.25	4.73	17.33	24.92	17.33
	3.5	0.09	2.93	14.36	24.31	14.36
	4.0	0.03	1.80	11.70	23.25	11.70
	5.0	0.00	0.67	7.53	20.44	7.53

b₁とb₂を入れ替えた場合, グラフは完全 に一致する.

⇒ 同じ曲線に2つのモデルがあてはめら れるということを意味する.

b₁と b₂の初期値の設定により異なる解 が得られてしまう.

どちらの解が適切かは固有技術による 判断にゆだねられる.

事前情報として b₁ > b₂ であることがわかっているのであれば、初期値がこの条件を満たすように設定しなければならない。

(3) Excel ソルバーによるパラメータ推定

表示2.5.4 データとExcelソルバーによる解析結果

t	у	yhat(1)	yhat(2)	e
0	0.00	0.00	0.00	0.00
1	3.49	3.44	3.44	0.05
2	4.87	4.90	4.90	-0.03
3	5.01	5.28	5.28	-0.27
4	5.57	5.10	5.10	0.47
6	3.86	4.12	4.12	-0.26
12	1.60	1.52	1.52	0.08
24	0.12	0.16	0.16	-0.04

	初期値1	初期值2
а	9.39	26.02
b1	0.52	0.19
b2	0.19	0.52
S	0.37	0.37

ある薬物を経口投与した. 投与後の時間 t = 1, 2, 3, 4, 6, 12, 24時間後の 血漿中薬物濃度 y の結果が得られた. このデータについて解析を試みる.

10	512.0.1				
t	у	yhat(1)	yhat(2)	e	yhatの列にはモデル式,
0	0.00	0.00	0.00	0.00	Sのセルには残差平方和
1	3.49	3.54	3.54	0.05	の計算式が入力されている。
2	4.87	5.04	5.04	0.17	$a \cdot h1 \cdot h2$ の各セルに初期値を入力する
3	5.01	5.43	5.43	0.42	
4	5.57	5.23	5.23	0.34	
6	3.86	4.19	4.19	0.33	
12	1.60	1.47	1.47	0.13	S = 日的セル, 日標恒 = 最小個,
24	0.12	0.14	0.14	0.02	
					に指定して実行
		初期値1	初期値2		\downarrow
	a	10.00	25.00		a・b1・b2に解が求められる.
	b1	0.50	0.20		
	b2	0.20	0.50		
	S	0.45	0.45		

表示2.5.4 データとExcelソルバーによる解析結果

b1とb2が逆に推定されていても残差平方和Sは一致する.

t	У	yhat(1)	yhat(2)	e
0	0.00	0.00	0.00	0.00
1	3.49	3.44	3.44	0.05
2	4.87	4.90	4.90	-0.03
3	5.01	5.28	5.28	-0.27
4	5.57	5.10	5.10	0.47
6	3.86	4.12	4.12	-0.26
12	1.60	1.52	1.52	0.08
24	0.12	0.16	0.16	-0.04

2.64

2.64

3.07

5.28

50.07

tmax

Cmax

AUC

2.64

2.64

3.07

5.28

50.07

0.69

8.86

21

表示2.5.4 データとExcelソルバーによる解析結果

t	у	yhat(1)	yhat(2)	е
0	0.00	0.00	0.00	0.00
1	3.49	3.44	3.44	0.05
2	4.87	4.90	4.90	-0.03
3	5.01	5.28	5.28	-0.27
4	5.57	5.10	5.10	0.47
6	3.86	4.12	4.12	-0.26
12	1.60	1.52	1.52	0.08
24	0.12	0.16	0.16	-0.04

e		0.5	r					
0.00		0.4					•	
0.05		0.4						
0.03		0.3					•	
0.27		<u></u> 0.2						
0.47								
0.26		0.1		•				
0.08		0.0					•	
0.04		(C	2	yhat	4		6
e = y	_{'i} — y _i h	at						

	初期値 1	初期値 2	
a	9.39	26.02	
b1	0.52	0.19	
b2	0.19	0.52	
S	0.37	0.37	

yhatが大きくなるにつれて残差 e の絶対値が大きくなることがわかる.

血中濃度の値が大きくなるにつれて誤差も大きくなり, その大きさが濃度に比例する (=変動係数が一定) こと がしばしばある.

このような場合は対数変換した値について非線形最小 2乗法を適用したほうが良いかもしれない.

表示 2.5.5 JMPによる解析結果 (左中下)

解											
		SSE	DFE	N	ISE	RMSE					
0.	3712880)421	4	0.092	822	0.304667					
パラ	メータ		推定	値 近似橋	離誤差	下側信頼限界	ネート しょうしん しんしょう しんしょ しんしょ	界			
а		9.39	9421380	15 1.74	512225	6.7822511	3				
b1		0.51	1976368	25 0.13	975497		. 0.927493	27			
b2		0.18	3763379	15 0.04	484203	0.1097721	5				
解法:	:解析 Ga	uss-N	Newton		パラン	メータb1,	b2の相対語	呉差	(近似標)	準誤差/	隹定値)
推定	自値の相	関			は	se.[b1]/b1	= 0.140 /	0 52	0 = 0.26	<u> </u>	
		a	b1	b2	9	e [b2] / b2	= 0.048 /	0.18	8 = 0.25	55	
а	1.000	0 -	0.9616	0.9706			- 0.0407	0.10	0 - 0.20		
b1	-0.961	.6	1.0000	-0.9147	と予	想外に大き	いことが	りか	3.		
b2	0.970)6 -	0.9147	1.0000	これ	は, b1とb2	の相関が	0.91	5 と大き	いため	である.
パラメータの標準誤差は大きくても、そこから計算されるt _{max} , C _{max} , AUCなどの 標準誤差はそれほど大きくないことがシミュレーションで確かめられている. § 2.6 補遺(3)参照											
パラ	ッメータ	の信	朝限界	が片側	しか計	算されてい	いないが、	信頼	限界を利	川用する	こと

はないと考えられるので問題はない. §2.6補遺 (2)参照

(5) 水準の取り方

表示2.5.4では,血中濃度の測定範囲がt=1~24時間であった. 血中濃度の測定範囲がt=1~10時間のように狭くなった場合,パラメータの推定 値はどのような影響を受けるだろうか?

以下のようなデータに対して log(y) をJMPで解析した. 【25-PK2.jmp】

血中濃度が t =1	~ 24 の	ときの)解析結	₹
解				
SSE	DFE	MSE	RMSE	
0.0046768183	4 0.0	011692	0.0341936	-
パラメータ	推定值 边	丘似標準誤	差	
a 10.6760	587972 0	.8299729	91	
b1 0.43193	777227 0	.055092	17	
b2 0.21484	463435 0	0.0118389	92	
解法:解析 Gauss-New	ton			
推定値の相関				
a	b1	b2		
a 1.0000 -0.8	660 0.9	224		
b1 -0.8660 1.0	000 -0.9	169		
b2 0.9224 -0.9	169 1.0	000		

1	血中濃度が t =1~10のときの解析結果									
	解									
		SS	E DFE		MSE	RMSE				
	0.0	004660545	7 4	0.001	1651	0.0341341				
	パラ	メータ	推定	2値 近似	標準誤	差				
Ē	а	1	0.5572274	92 3.2	872441	19				
	b1	0	43690978	73 0.1	723156	55				
	b2	0	21638863	01 0.	078683	34				
	解法:	解析 Gauss	s-Newton							
	推定	目値の相関)					
		a	b1	b	2					
	а	1.0000	-0.9860	0.9945	5					
	b1	-0.9860	1.0000	-0.9837	7					
	b2	0.9945	-0.9837	1.0000	D					

表示 2.5.7 水準の取り方による近似標準誤差の違い

tの範囲	а	b1	b2
0~24	0.830	0.055	0.012
0~10	3.287	0.172	0.079

t の範囲が1~10の方が1~24に比べて近似標準誤差が大きい.

t = 1~10の方が1~24に比べてパラメータ推定値の 相関が±1.0により近い.

測定幅はパラメータの推定精度に大きく影響する。 ⇒測定幅は広く取ったほうがよい.

27

薬物動態の解析

まとめ

薬物動態は変化に富んだ分野の ほんの一部だけを説明したに過ぎない。 この分野で統計解析を適切に適用するためには、 薬物の吸収・分布・代謝・排泄の過程についての固有技術を 正しく把握し、適切なモデルを適用しなければならない。

また,一般にパラメータの推定精度が悪いので,解析結果を 適切に把握して正しい結論を導くのは大変難しい。 今後,この分野の解析手法の発展が期待される。

出典と謝辞

本発表は、「医薬品開発のための統計解析-第3部 非線形モ デル」及び、過去の SAS Institute Japan JMP事業部主催セ ミナー「医薬品開発のための統計解析」講師資料を元に構成致 しました.

ご指導,資料の提供を頂きましたJMPセミナー講師陣の皆様に お礼申し上げますとともに,本発表の機会をいただきましたこと をお礼申し上げます. じっくり勉強すれば身につく統計入門 JMP®のグラフ作成機能を使いこなそう: 経時測定データのケース

JMP® is a registered trademark of SAS Institute Inc. in the USA and other countries. ® indicates USA registration

はじめに

データの解析に先立ち, グラフによる可視化は重要 な作業になります.

後半は『医薬品開発のための統計解析 第2部 実験計画法 改訂版』から7章4節「経時データの 解析」を題材として使用し, JMP のグラフ機能を使いこなすための方法を解説します.

本日使用する数値が入力された Excel ファイルは サイエンティスト社のHPからダウンロードできます.

http://www.scientist-press.com/12_277.html

■ グラフ化の重要性

■ データの紹介

- JMP データテーブルの基礎
- ■「グラフビルダー」の使い方
- ■「重ね合わせプロット」の使い方

■ まとめ

グラフ化の重要性

- グリーン本では、繰り返しグラフ化の重要性を述べている.まず
 最初にグラフを作成してから解析がスタートする.
- グリーン本で市販の解析ソフトとして JMP を採用した理由は以下の通り述べられている(引用:第1部基礎 §0.はじめに).

本書では次に記す理由でJMPを用いる.

JMP は、データのグラフ化機能が豊富である. 変数を指定して解析を指示 すると、まず、データの持つ特徴を端的に表わすグラフが表示される. 解析 者はグラフを見て考え、次の解析や別のグラフを指示する. JMP はこのような 試行錯誤を反復する解析(探索的解析)に最適なプログラムで、実務家 の持つ固有技術をフルに生かすことができる.

データの紹介

同一の被験者について、経時的に複数回の観測値が得られているデータ ⇒ 経時データ

<例(第2部「実験計画法」表示7.4.1)>

開発した降圧剤(治験薬)が既存の降圧剤(対照薬)と 比べて<u>優れていることを確認</u>する目的で、<u>6人の被験者に、2</u> <u>剤を投与</u>し、1時間ごとに投与8時間後まで血圧を測定した.

⇒どのように解析するのが良いだろうか

表示 7.4.1 経時データ

		0	1	2	3	4	5	6	7	8
	被験者	投与前	1hr	2hr	3hr	4hr	5hr	6hr	7hr	8hr
	1	121	115	112	116	112	117	116	112	113
	2	112	117	112	114	109	118	117	122	120
嶪	3	125	128	116	113	115	121	125	121	126
照	4	132	129	112	110	120	132	136	122	126
衣	5	123	122	124	126	119	126	134	130	122
	6	134	127	124	117	112	121	126	135	133
	平均	124.5	123.0	116.7	116.0	114.5	122.5	125.7	123.7	123.3
	1	127	118	115	113	110	114	112	119	129
	2	120	113	104	104	102	111	119	122	120
薬	3	135	125	115	117	116	115	123	124	133
籔	4	127	121	110	110	106	118	125	128	124
治	5	115	114	114	106	103	110	110	112	119
	6	128	125	117	110	109	109	121	124	125
	平均	125.3	119.3	112.5	110.0	107.7	112.8	118.3	121.5	125.0
差		-0.8	3.7	4.2	6.0	6.8	9.7	7.3	2.2	-1.7

6

JMP データテーブルの基礎

- データテーブルは統計解析ソフトに一般的な構成となっている
 - ▶ 行:オブザベーション
 - > 列:変数(群の情報なども下記の「薬剤」のように列として扱う)
- Excel ファイルやSAS データセット(*.sas7bdat)を直接読み込むこと が可能

●経時変化データ… ♪	 ↓ 4/0列 ↓ 	薬剤	被験者	時点	血圧
	1	対照薬	1	0	121
	2	対照薬	1	1	115
	3	対照薬	1	2	112
	4	対照薬	1	3	116
	5	対照薬	1	4	112
	6	対照薬	1	5	117
▼//(J/U)	7	対照薬	1	6	116
■	8	対照薬	1	7	112
■ 時点(文字型) 名 🗸	9	対照薬	1	8	113
▲時点品	10	対照薬	2	0	112
▲血圧	11	対照薬	2	1	117
	12	対照薬	2	2	112
	13	対照薬	2	3	114
	4.4	5.4 pm 545	2	4	100

JMP データテーブルの基礎

- JMP データテーブルの特徴
 - 列(変数)に「尺度」を設定することが必要
 - ⊿連続尺度:今回は「血圧」および「時点」
 - → 順序尺度:今回は設定しない(スコア等)
 - ▲ 名義尺度:今回は「薬剤」および「被験者」

●経時変化データ… ♪	 ↓ 4/0列 ↓ 	薬剤	被験者	時点	血圧
	1	対照薬	1	0	121
	2	対照薬	1	1	115
	3	対照薬	1	2	112
	4	対照薬	1	3	116
	5	対照薬	1	4	112
→ ħI/(5/0)	6	対照薬	1	5	117
▼//(S/U) ● 夢知 -•-	7	対照薬	1	6	116
■ 余削 ¥ ■ 祐眛考	8	対照薬	1	7	112
■ 時点(文字型) 🚙 🖤	9	対照薬	1	8	113
▲時点品	10	対照薬	2	0	112
血圧	11	対照薬	2	1	117
-	12	対照薬	2	2	112
	13	対照薬	2	3	114
					100

9

JMP データテーブルの基礎

- 尺度の変更方法
 - 「尺度」のアイコンをクリックして適切なものを選択する
 - 通常, Excel から読み込んだ直後は数値は連続尺度に設定されている.
 - >「被験者」の変数を名義尺度に変更する
 - > JMP は尺度に応じて適切な統計手法が自動的に選択される仕様のため, 尺度を正しく設定することが重要となる.

「グラフビルダー」の使い方

■ JMP のグラフメニューには種々のプラットフォームが存在 経時変化グラフの作成に「グラフビルダー」と「重ね合わせプロット」を紹介

ファイル(F) 編集(E) テー	·ブル(T) 行(R) 列	刂(C) 実験計画	(DOE)(D) 分析(A)	グラフ	(G) ツール(O) 表示(V)	Ċſ	ンドウ(W) ヘルプ(H)
🛤 🔁 💕 🗔 🐰 🎙	a 🛝 🚽 🕮 🛅	🔛 🖿 🗏 🎽	V	11 In 11 D	グラフビルダー		列をグラフゾーンにドラッグしてインタラクティブ
●経時変化データ… ▷	 ↓ 4/0列 	薬剤	被験者	₽.	バブルプロット		にクラノを構築。カテコリに分けた複数のクラ フが作成できる。
	1	対照薬	1	2010 2010	散布図行列	1	
	2	対照薬	1		パラレルプロット	5	
	3	対照薬	1		セルプロット	2	
	4	対照薬	1			- 6	
	5	対照薬	1	漢	三次元散布凶	2	
(二)利(5/0)	6	対照薬	1	3	等高線図	7	
▼パ(5/5) 基 茶刻 →	7	対照薬	1	Δ	三角図	6	
▲ 被験者	8	対照薬	1		ᄪᆓᅻᇚᇖᇈ	2	
📕 時点(文字型) 🔗 🗶	9	対照薬	1		一直 ノロット	3	
時点	10	対照薬	2	T	フロファイル	2	
⊿血圧	11	対照薬	2		等高線プロファイル	7	
	12	対照薬	2		配合プロファイル	2	
	13	対照薬	2	9	カスタムプロファイル	4	
	14	対照薬	2	*	Excel TO Jak II	P	
	15	対照薬	2		Excerve yr hy	B	
	16	対照薬	2	F	ツリーマップ	7	
▼行	17	対照薬	2		チャート	2	
すべての行 108	18	対照薬	2	\sim	重ね合わせプロット	P	
選択されている行 0	19	对照薬	3	<u>~</u>	±19 (11/2/19/1	5	

グラフビルダー ("データを眺める" ためのグラフツール) インタラクティブにグラフを作成する比較的新しいツール

▶ グラフメニューから「グラフビルダー」を選択

🏥 経時変化データ	9表示7.4.1_original - グラフビルダー	MP		-		×
₄ ▼グラフビノ	レダー					
前回の設定 変数 ・ 変数	アログボックス 終了		<u>بالمحمد المحمد المحم </u>			
 ▲ 菜剤 ▲ 被験者 			グループX	段組	重ね合わ	ŧ
<mark>▲</mark> 時点(3 ▲時点	(字型)				色	
▲血圧					サイズ	
⊿ <u>点</u> 点をずらす 応答軸 要約統計量 講差/(- 変数	√ 魚助	Y	変数をドロップゾーンにドラッグしてく ださい	グループヤ		
		地図シェ ープ	Х	度数	ページ	
						•

12

「グラフビルダー」の使い方 ■ 変数をドロップゾーンにドラッグする (時点毎に 12 名のデータ) ▶ 「血圧」を [Y] にドロップ ▶「時点」を [X] にドロップ 経時変化データ表示7.4.1_original - グラフビルダー - JMP Х ⊿ ▼ グラフビルダー ◙▧◸◪◙◪▯◙◍◗ ◨◓◨๚ ◳◴◪◪ 元に戻す やり直し 終了 変数 X:時点,Y:血圧 ▼5列 ▲ 薬剤 ▲ 被験者 グループン 段組 重ね合わせ 140 ▲ 時点(文字型) 色 ▲時点 ▲ 血圧 135 サイズ ⊿点 平滑線 130 点をずらす ~ 広答論 自動 125 要約統計量 なし グループ 誤差バ-なし 血圧 120 D 変数 ⊿ 平滑線 115 自動 広答輔 索勒 110 105 : 100 地図シェ プ ó 6 8 度数 ページ 時点 13 **☆** 🐺 📃 ▼ 「グラフビルダー」の使い方 [ページ] の機能は JMP Ver. 12 以降 変数をドロップゾーンにドラッグする ▶ 「被験者」を 「重ね合わせ] にドロップ (被験者毎に色分け表示) ▶ 「薬剤」を 「ページ] にドロップ(薬剤毎にページを分割) 対照薬 治験薬 薬剤 = 対照薬 薬剤 = 治験薬 重ね合わせ: 被験 グループX 段組 者 色 135 135 サイズ 130 被験者 130 125 125 グルーソン 血圧 血圧 120 ____5 120 115 115 110 105 110 100 ź 6 地図シェ ó ó 6 ź 8 度数 ページ: 薬剤 , 時点 何ページもあるグラフ作成の繰り返し作業に便利 14

「グラフビルダー」の使い方

- データの吟味が済んだ後に、薬剤毎の平均値と標準誤差のグラフを作成することも可能である。
 - ▶ [重ね合わせ] から「被験者」を削除する. 代わりに「薬剤」を指定する.
 - ▶ [要約統計量] および [誤差バー] をそれぞれ平均および標準誤差に設定する.

- 重ね合わせプロットの変更
 - 最初は被験者毎に別々のグラフとして表示されるため、重ね合わせグラフに 変更する
 - > ▼の [重ね合わせプロット] から [グループの重ね合わせ] を指定

■ 平均値プロットの作成

105

グループ

Ó

ź

被験者=1

4

時点 ---被験者=2 6

8

被験者=3

>「重ね合わせプロット」では平均値を指定したグラフ描画機能は搭載されていない。平均値のデータセットを新規作成する必要があるため、簡単に解説する。

100

被驗者=4

Ó

被験者=5

2

4

時点

被験者=6

6

8

> テーブルメニューの「要約」を選択する.

ファイル(F) 編集(E)	テーブ	ル(T) 行(R)	列(C)	実験計画	(DOE)(D) 分	Ւ析(A)	グラフ(G)	ツール(O) 表示(V)	ウイン
1 🖼 🤮 😼 🔒	₽ª	要約		58	グループごとの要認	約統計	量を求める。	₽ ₽		
●経時変化データ	1 38	サブセット							. –	
·	2 78	並べ替え			被験者		時点		血圧	
	BBB	列の結み重ね				1		0		121
	Boo	지하시회				1		1		115
	5-m	2月000mm18月				1		2		112
	₹.	転置				1		3		116
		連結				1		4		112
☞列(5/0)		結合(Join)				1		5		117
🔒 薬剤 \star		更新				1		6		116
📕 被験者	188	反測はパターン	/主子			1		7		112
📕 時点(文字型) 🕷	100	大,刑1直ハワーノ	132/1			1		8		113
▲時点中		テータテーフルの)比較			2		0		112

- 平均値プロットの作成
 - >「血圧」の列を選択し、[統計量]の▼を押下し、平均を指定する.
 - ▶ 右の通り [グループ化] に薬剤と時点を指定する.

「重ね合わせプロット」の使い方

- 平均値プロットの作成
 - ▷ 以下の通り平均値データセットが作成される. 6 症例の平均値で あることを, 行数が 6 になっていることで確認する.

🛄 経時変化データ表示7.4.1_origina	alの要約 (薬剤、時	i点) - JMP						_		×
ファイル(F) 編集(E) テーブル(T) 行	〒(R)列(C)実	験計画(C ■ P= PH	OE)(D)	分析(A) 型编 🃰 🖩	グラフ(G) ツール(O ┨田┨│週 🐕 🚽) 表示(V)	ウィンドウ(W	り ヘルプ	(H)	
 ・ 経時変化データ表示7.4.1 ・ ・ソース 		薬剤	時点	行数	平均(血圧)					
	1	対照薬 対昭薬	0	6	124.5					^
▼列(4/0)	3	対照薬	2	6	116.66666667					
	4	対照薬 対照薬	3	6	116 114.5					
▲ 时息 ● ▲ 行数 ●	6	対照薬	5	6	122.5					
⊿ 平均(血圧) 👜	8	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	7	6	123.666666667					
	9	対照薬	8	6	123.333333333					
●行	10	治験薬	1	6	119.333333333					
9 へ C の行 18 選択されている行 0	12	治験薬 治験薬	2	6	112.5 110					
除外されている行 0 表示しない行 0	14	治験薬	4	6	107.666666667					
ラベルのついた行 0	15	治験薬 治験薬	5	6 6	112.83333333 118.333333333					—
	I								☆ [] •]

■ 平均値プロットの作成

▶ 重ね合わせプロットで平均値プロットを作成する.「薬剤」は今回 [グループ変数] として指定する例を示す.

27

☆ 🖼 🗌 🔻

後半のまとめ

- JMP は統計解析(検定・推定)のみを実施するソフトウェアではなく,探索的データ解析に有用なグラフ作成機能を有する.
- 今回は経時変化データを例として、「グラフビル ダー」および「重ね合わせプロット」の使い方を簡 単に説明した。
- JMP でデータ解析を行う際は, グラフ作成機能 もあわせて活用することが望まれる.

出典及び謝辞

本日の発表は「医薬品開発のための統計解析(グリーン本)第2 部 実験計画法 改訂版」,過去の SAS Institute Japan JMP 事業部主催セミナー「医薬品開発のための統計解析」講師資料お よび JMP のヘルプファイル等を参考に,構築させていただきまし た.

ご指導いただきました, JMP セミナー講師陣の皆様, 第2期医薬 安全性研究会企画編集グループの皆様に厚く御礼申し上げま す.

補足資料

計算式....

グループ別

実線でつな

Þ

要約

誤差, 欠測値

変数

10のべき乗

3乗根

3乗

逆数 絶対値

