医薬品開発のための統計解析

じっくり勉強すれば 身につく統計解析

第1部 基礎 改訂版 正誤表と補足

の行に,補筆箇所(ページp,行l,表示,式)を示す.

1. 3は上から3行目, 1. 6は下から6行目.

次の行に補筆前の内容を行の左端から表示する.修正個所にはアンダーラインが引かれている. 最後に,補筆後の内容を表示する.

表示などで,この正誤表を切り取って本に張り付けたい場合は,PDFから該当するページを 92%に縮小して印刷すると本と同じ大きさになる.

0 はじめに

0.1 統計解析用ソフトウェア

p.2 , *l*. 2

は改訂された関数だけでなく,旧版の関数もそのまま利用することができる.<u>再</u>版では は改訂された関数だけでなく,旧版の関数もそのまま利用することができる.改訂版では

1 統計の基礎

1.2 サイコロのの目の数の期待値と分散

$$=\frac{1}{6} \times \left((-2.5)^2 + (-1.5)^2 + (-0.5)^2 + 0.5^2 + 1.5^2 + 2.5^2\right) = \frac{17.50}{6} = \frac{35}{12} = \underline{1.917}$$

2 1 統計の基礎

$$= \frac{1}{6} \times \left((-2.5)^2 + (-1.5)^2 + (-0.5)^2 + 0.5^2 + 1.5^2 + 2.5^2 \right) = \frac{17.50}{6} = \frac{35}{12} = 2.917$$

1.3 分散の加法性,中心極限定理,正規分布

p.25, 表示 1.3.3 右下の 2 つのグラフを入れ替える

表示 1.3.3 中心極限定理(サイコロの目の合計の分布)

1.5 モデル

p.41, *l*. 7

さを増やすという好ましくない効果(<u>点線</u>で表わす)の両方をもっている. さを増やすという好ましくない効果(薄い実線)の両方をもっている. p.43 , 表示 1.5.4 の*l*. 1

表示 1.5.4 の <u>実験 [A]</u>から,設計図の優劣をいうことはできない. 表示 1.5.4 の [実験 A]から,設計図の優劣をいうことはできない.

p.44, l. 3

の中で,乱<u>解</u>法および枝分かれ実験として詳しく解説する. の中で,乱塊法および枝分かれ実験として詳しく解説する.

2 1 組のデータの解析

2.1 データの特徴の記述

p.57,表示 2.1.2 C:D 列を修正

	А	В	С	D	Е	F	G
3	i	X	е	e^2		Excel 関数	
4	1	1	-5.25	27.56		=B4-B\$12	=C4^2
5	2	2	-4.25	18.06			
6	3	3	-3.25	10.56			
7	4	4	-2.25	5.06			
8	5	5	-1.25	1.56			
9	6	7	0.75	0.56			
10	7	10	3.75	14.06			
11	8	18	11.75	138.06			
12	平均	6.25	0		=AVERAGE (B4:B11)	=AVERAGE (C4:C11)	
13	平方和	215.5	215.5	215.5	=DEVSQ(B4:B11)	=SUMSQ(C4:C11)	=SUM(D4:D11)
14	n	8			=COUNT (B4:B11)		
15	自由度	7			=B14-1		
16	平均平方	30.79	30.79		=VAR (B4:B11)	=C13/B15	
17	標準偏差	5.55	5.55		=STDEV (B4:B11)	=SQRT (C16)	
18	変動係数	0.89			=B17/B12		

表示 2.1.2 平方和,平均平方,標準偏差の計算

p.62,表示2.1.3

Excel シートの列名 <u>A B C D</u>

Excel シートの列名 I J K L

2.2 データのグラフ表示と外れ値

p.73,演習 2.2.1 の前に追加

また, グラフの整形に役立つ VBA マクロ「グラフ整形」についてその使い方も説明されている.

4 2 1 組のデータの解析

2.4 平均 μ に関する推測(母標準偏差 σ 既知)

p.97, 表示 2.4.6 右のグラフを入れ替える.

表示 2.4.6 検出力曲線

p.97,(5)の最後に追加する.

(補足) データテーブルを使った Excel ブックがメモリーにロードされていると,シートが更新される毎に計算を繰返すので,データテーブルとは無関係のプログラムの実行速度が低下することがある.それを防ぐために,次の処理を施す必要がある.

Excel 2003 では [ツール] > [オプション] > [計算方法] を, Excel 2007 以降では [数式] > [計算 方法] を選び,「テーブル以外自動」を選択する.

この指定をすると,データテーブルを新規作成またはテーブルに修正を加えても,出力が得られない.このときは,ファンクション9をクリックして,再実行させる.

p.114, 表示 2.6.10. 表の下に次の文章を追加する.

上の関数の最後のパラメータ FALSE は省略できる.ただし,その前の","は省略できない.

3 2組のデータの解析

3.1 データのグラフ化

p.132,脚注1,後半削除

整形の過程は Excel ファイルに示されている . <u>§2.7</u> 補遺 (8) 参照 . 整形の過程は Excel ファイルに示されている .

3.3 分散の違いの検定

p.142,*l*. 4(表示 3.3.1 に合わせる) =FDIST(F 値,分子の自由度,分母の自由度) = FDIST(<u>5.00</u>, 9, 7) = 0.023 =FDIST(F 値,分子の自由度,分母の自由度) = FDIST(4.997, 9, 7) = 0.023

p.144 **, 脚注** 11

この理由については, §3.8 補遺 (1) で説明する.

この理由については, §3.8 補遺(2)で説明する.

3.6 検出力と n の決め方

p.156 , *l*. 6

以下,表示 3.6.1 と表示 3.6.2 を使って説明する.この<u>表</u>は次項でも用いられる.

以下,表示 3.6.1 と表示 3.6.2 を使って説明する.この表示は次項でも用いられる.

p.160, 表示 3.6.3 入れ替え

表示 3.6.3	検出力の計算表

_					検出力		
	nα	(片側)	\square	自由度	既知	未知	
	5	0.025	1.5	8	0.660	0.549	
	5	0.05	1.5	8	0.766	0.698	
	10	0.025	1.0	18	0.609	0.562	

p.160,表示 3.6.3 の下 *l*. 3

E4: =NORMSDIST(C4/SQRT(2/A4)-NORMSINV(1-B4),TRUE)

E4: =NORMSDIST(C4/SQRT(2/A4)-NORMSINV(1-B4))

p.163 , **脚注** 18

Excel 2003 以前では,トップメニューから [ルール] > [ゴールシーク] を選択する. Excel 2003 以前では,トップメニューから [ツール] > [ゴールシーク] を選択する.

6 3 2 組のデータの解析

p.164 , *l*. 1

 α (両側) = 0.05, $\beta = 0.80$ のとき, n の近似値は $16/\Delta^2$ として求められる. 近似式の 16 を 21 とすると $\beta = 0.90$ となる.

 α (両側) = 0.05, $1 - \beta = 0.80$ のとき, n の近似値は $16/\Delta^2$ として求められる. 近似式の 16 を 21 とすると $1 - \beta = 0.90$ となる.

3.7 ノンパラメトリック検定

p.171, *l*. 3

$$S_e = \sum_{i=1}^{2} \sum_{j=1}^{n_i} (x_{ij} - x_{i.})^2 = \frac{5751.50}{5751.50}, \quad V_e = \frac{S_e}{n_1 + n_2 - 2} = \frac{4751.50}{6} = \frac{791.87}{6}$$
$$S_e = \sum_{i=1}^{2} \sum_{j=1}^{n_i} (x_{ij} - x_{i.})^2 = 4751.50, \quad V_e = \frac{S_e}{n_1 + n_2 - 2} = \frac{4751.50}{6} = 791.92$$

p.177,表示 3.7.8,表頭

Wilcoxon Van <u>del</u> Waerden

Wilcoxon Van der Waerden

p.178, *l*. 15

リック検定である Wilcoxon の符号付き <u>を</u>順位検定 (Signed Rank Test)を取り上げる. リック検定である Wilcoxon の符号付き順位検定 (Signed Rank Test)を取り上げる.

p.178, *l*. 2

両側の p 値は 0.0156 で,対応のある t 検定の両側 p 値 0.0298 と比べると小さくなっている. 両側の p 値は 0.0156 で,対応のある t 検定の両側 p 値 0.0208 と比べると小さくなっている.

p.180, 表示 3.7.11. 左の検査値の 55 を太字にする.

表示 3.7.1 データと JMP 出力

p.182, *l*. 2

均誤診率は (2*0.30 + 0.08)/(2+1) = 0.227 となる . 均誤診率は (2*0.30 + 0.17)/(2+1) = 0.257 となる .

p.182 , *l*. 6

(2*0.20+0.25)/(1+2) = 0.216 となる.

(2*0.20+0.25)/(1+2) = 0.217となる.

p.182, *l*. 7

ROC 曲線は §3.7 ノンパラメトリック検定の <u>表示 3.7.6 (p.175)</u>とよく似ている.実は,データ を順位に変換してグラフ化したのが ROC 曲線である.表示 3.7.10 (p.178)と同様に,

ROC 曲線は §3.7 ノンパラメトリック検定の表示 3.7.5 (p.174) とよく似ている.実は,データ を順位に変換してグラフ化したのが ROC 曲線である.表示 3.7.9 (p.177) と同様に,

3.9 演習解答

p.187, *l*. 4

- 11, 12 行目を除いて解析するために, 行番号 11, 12 をクリックしてから,
- 11,13行目を除いて解析するために,行番号11,13をクリックしてから,

p.191, 表示 3.9.7 C列の 16 行以下に間違いがある.

	А	В	С	D	Е	F	G
2		j	通常の解析			比	
3	個体番号	投与前	投与後	差	後/前-1	前/後-1	
4	1	110	126	16	0.1455	-0.1270	0.1358
5	2	125	157	32	0.2560	-0.2038	0.2279
6	3	186	219	33	0.1774	-0.1507	0.1633
7	4	154	189	35	0.2273	-0.1852	0.2048
8	5	208	259	51	0.2452	-0.1969	0.2193
9	6	137	154	17	0.1241	-0.1104	0.1170
10	7	98	110	12	0.1224	-0.1091	0.1155
11	8	180	230	50	0.2778	-0.2174	0.2451
12	n	8	8	8	8	8	8
13	平均	149.8	180.5	30.8	0.1970	-0.1626	0.1786
14	平方和	10673.5	19362.0	1563.5	0.0272	0.0134	0.0190
15	自由度	7	7	7	7	7	7
16	平均平方		2145.4	223.4	0.0039	0.0019	0.0027
17	平均値の標	準誤差	23.2	5.3	0.0220	0.0155	0.0184
18							
19	検定						
20	t值		1.3278	5.8196	8.9434	-10.5133	9.6846
21	p値(片側)		0.10275	0.00033	0.00002	0.00001	0.00001
22	n値(両側)		0 20550	0 00065	0 00004	0 00002	0 0 0 0 0 3

表示 3.9.7 比と自然対数の差についての検定結果

p.192, *l*. 7

F 列を G 列にコピーし, G4 のセルに =LN(C4)-LN(B4) または <u>=LN(B4/C4)</u>を入力して F 列を G 列にコピーし, G4 のセルに =LN(C4)-LN(B4) または=LN(C4/B4) を入力して

p.192 , *l*. 2

<u>「基礎 5 演習.xls」の</u>シート「演 3.6.1-2」で各自確認せよ.

シート「演 3.6.1-2」で各自確認せよ.

4 相関・回帰

4.1 散布図

p.197, 表示 4.1.2 グラフの上の (a) (b) (c) (d) を除く.

p.201,*l*. 5 脚注を追加

すると,それに対応する散布図のマークが大きくなる.

すると,それに対応する散布図のマークが大きくなる*.

* JMP バージョン 9 以降ではマークの大きさは変わらず,強調表示される.

p.229, 表示 4.3.7 「目的セル」の内容を修正する.

目的セル \$U\$7

目的セル \$S\$6

p.232, 表示 4.3.8 黒枠の左右の説明を修正する.表示 4.5.3, 表示 4.5.4, 表示 4.5.6, 表示 4.6.1 も同様.

4.4 誤差を考慮した推定

p.241 表示 4.4.5

表頭,表側に示されている Excel 計算表の列名 J~P を S~Y に,行番号 32~38 を 29~35 に修 正する.

p.242 表示 4.4.6 「誤差」「平均平方 (V)」の内容を修正する.

「平均平方(V)」9.695

「平均平方 (V)」0.695